What is Probablistic Modeling?
Probabilistic modeling is a powerful approach in machine learning and statistics that enables us to represent uncertainty and make predictions based on probabilistic reasoning. It involves constructing mathematical models that capture the uncertainty inherent in real-world phenomena and allows us to reason about them in a probabilistic framework. The flexibility and interpretability of probabilistic models make them a valuable tool in various domains, including machine learning, decision-making, and data analysis.At the core of probabilistic modeling is the idea that we can use probability distributions to describe and model uncertain quantities. These distributions provide a way to quantify our belief or knowledge about the possible outcomes of a particular event or process. By incorporating data and prior knowledge, we can update these distributions using Bayes' theorem to make informed predictions or draw conclusions.Related terms
Not to be confused with:
Back to glossary


